
LAT
E
X TikZposter

Solving Noisy k-XOR below the nk/2
threshold

Arpon Basu Jun-Ting Hsieh Andrew D. Lin Peter Manohar
Solving Noisy k-XOR below the nk/2

threshold

Arpon Basu Jun-Ting Hsieh Andrew D. Lin Peter Manohar

Noisy k-XOR Problem

• Given random k-uniform hypergraph H on [n]

• For every clause C in H: equation ∏i∈C xi = ∏i∈C x∗i
• Planted solution x∗ ∈ {−1, 1}n satisfies equations

• Flip each RHS independently w.p. 49%
Goal: Find planted assignment x∗

• k = 2 corresponds to Stochastic Block Model

• k-noisy XOR a.k.a. k-sparse Learning Parity with Noise

Prior Work

Feldman-Perkins-Vempala’15: Can recover x∗ in poly(n)
time if ⩾ Ω̃(nk/2) clauses
Subexponential tradeoff for refutation:

• Raghavendra-Rao-Schramm’17: With ≳ n(n/ℓ)k/2−1

clauses, can refute random k-XOR in nO(ℓ) time. Trade-
off for k = 3 below

Open: Subexponential tradeoff for planted CSPs?

Our Main Result

Theorem: Can solve random planted k-XOR/break
k-sparse LPN with

m ≳ n(n/ℓ)k/2−1 clauses in nO(ℓ) time.

Correct analog of RRS’17 to the planted CSP setting!

Can solve all random CSPs!

Given CSP predicate P : {−1, 1}k → {0, 1}, we can reduce
random planted CSP to noisy XOR by Fourier analysis on
P.
Consequence: Given random k-CSP with ≳ n(n/ℓ)k/2−1

clauses, can find satisfying assignment (assuming P has
one) in nO(ℓ) time

Our Algorithm

Two-step approach:

1. Find approximate solution using Sum-of-Squares

2. Round to exact solution using local improvement

Both parts crucially use randomness of hypergraph H

Canonical Sum-of-Squares Program

Define objective function: ψ(x) = EC∼H[bC · xC] where bC
is RHS of equation for clause C, and xC = ∏i∈C xi

Canonical SoS Relaxation: Maximize ψ(x) using deg ℓ
SoS
deg ℓ SoS is a polynomial optimization algorithm which
runs in nO(ℓ) time

Step 1: Approximate Solution via SoS

Key property: Since H is random,

ψ(x) = EC∼H[bC · xC] ≈ ⟨x, x∗⟩k

for all x.

Consequences of Randomness:
• ψ(x) maximized at x = x∗

• Degree-ℓ Sum-of-Squares recognizes this!

• SoS finds solution x that is 1 − o(1) correlated with x∗

Step 2: Rounding via Local Improvement

Setup: We have x that is 1 − o(1) correlated with x∗
Let “bad” = set of indices i ∈ [n] where x, x∗ differ

Key observation: Because H is random, a clause C contain-
ing a bad index doesn’t contain any other bad index w.p.
⩾ 1 − o(1)

Recovery: If i is bad and C containing i has no other bad
index: bC = xi · xC\{i} = xi · x∗C\{i} =⇒ xi = bC · xC\{i} = x∗i
With log n clauses containing i, majority vote recovers x∗i
w.h.p.

Future Directions

• Extend to semi-random CSPs: Variables in clauses are
arbitrary, literals are random

• No known guarantees on the performance of canonical SoS
program on semi-random instance!

• Guruswami-Hsieh-Kothari-Manohar’23 can solve semi-
random planted CSPs when m ≳ nk/2, but subexp tradeoff
not known

Find our Paper!

Full paper:

arxiv.org/abs/2507.10833

Scan the QR code for the paper


