SoLviING Noisy k-XOR BELOW THE 71

Arpon Basu

Noisy k-XOR Problem

e Given random k-uniform hypergraph H on [n]
* For every clause C in H: equation [[;cc x; = [[;cc X}
e Planted solution x* € {—1,1}" satisfies equations

e Flip each RHS independently w.p. 49%
Goal: Find planted assignment x*

* k = 2 corresponds to Stochastic Block Model

e k-noisy XOR a.k.a. k-sparse Learning Parity with Noise

Prior Work

Feldman-Perkins-Vempala"15: Can recover x* in poly(#)
time if > Q(n*/?) clauses

Subexponential tradeoff for refutation:

e Raghavendra-Rao-Schramm’17: With > n(n/¢)*/?-1
clauses, can refute random k-XOR in n°) time. Trade-
off for k = 3 below

Runtime (loglog scale)

1
| [AOW15, BM16]
1
1

constraints (log scale)

Open: Subexponential tradeoff for planted CSPs?

Our Main Result

Theorem: Can solve random planted k-XOR/break
k-sparse LPN with

O(¢)

m > n(n/0)*?2=1 clauses in n°) time.

Correct analog of RRS’17 to the planted CSP setting!

k/?2

THRESHOLD

Jun-Ting Hsieh Andrew D. Lin Peter Manohar

Can solve all random CSPs!

Given CSP predicate P : {—1,1}F — {0,1}, we can reduce
random planted CSP to noisy XOR by Fourier analysis on
P.

Consequence: Given random k-CSP with 2 n(n/ é)k/ 2-1
clauses, can find satistying assignment (assuming P has

one) in n°) time

Our Algorithm

Two-step approach:

1. Find approximate solution using Sum-of-Squares

2. Round to exact solution using local improvement

Both parts crucially use randomness of hypergraph ‘H

Canonical Sum-of-Squares Program

Define objective function: ¥ (x) = Ec..y/|bc - xc] where b¢
is RHS of equation for clause C, and x¢c = [[;cc x;

Canonical SoS Relaxation: Maximize ¢(x) using deg /¢
S0S

deg ¢ SoS is a polynomial optimization algorithm which
runs in 79 time

Step 1: Approximate Solution via SoS

Key property: Since H is random,

>|<>k

(x) = Ecoylbc - xc] =~ (x,x

for all x.

Consequences of Randomness:

e (x) maximized at x = x*
e Degree-¢ Sum-of-Squares recognizes this!

e SoS finds solution x thatis 1 — o(1) correlated with x*

Step 2: Rounding via Local Improvement

Setup: We have x thatis 1 — o(1) correlated with x*
Let “bad” = set of indices i € [n] where x, x* differ

Key observation: Because H is random, a clause C contain-

ing a bad index doesn’t contain any other bad index w.p.
>1—0(1)

Recovery: If i is bad and C containing 7 has no other bad
index: b = x; - Xc\{i} = Xi~ Xé\{l} — x; = bc- XC\{i} = x;k

With logn clauses containing i, majority vote recovers x:

w.h.p. |

Future Directions

e Extend to semi-random CSPs: Variables in clauses are
arbitrary, literals are random

* No known guarantees on the performance of canonical SoS
program on semi-random instance!

e Guruswami-Hsieh-Kothari-Manohar’23 can solve semi-
random planted CSPs when m > n*/2, but subexp tradeoff
not known

Find our Paper!

Full paper:
arxiv.org/abs/2507.10833

Scan the QR code for the paper

BTEX TikZposter

